ALGEBRAIC NUMBER THEORY BACK-UP FINAL EXAM

This exam is of **60 marks** and is **4 hours long** - from 10 am to 2pm. Please **read all the questions carefully**. Please feel free to use whatever theorems you have learned in class after stating them clearly. You may also refer to the books by

- K. Ireland and M. Rosen A Classical Introduction to Modern Number Theory.
- I.N. Stewart and D.O. Tall Algebraic Number Theory

If you have any questions please call me at +91 98804 59642 or email me at rameshsreekantan@gmail.com. Please sign the following statement and scan this sheet along with the rest.

I have not used any unfair or illegal means to answer any of the questions in this exam.

Name:

Signature:

1. Consider the field $K = \mathbb{Q}(\sqrt[3]{D})$ where D is in Z.

a. How many quadratic subfields does it have? What are they?	5
b. What are the possible ranks of the group of units \mathfrak{O}_K^* of the ring of integers \mathfrak{O}_K ?	5

2. Let K be the field $\mathbb{Q}(\sqrt{5}, \sqrt{-2})$.

a. Find a primitive element for K .	2
b. Find an integral basis for \mathfrak{O}_K and compute Δ_K .	8
c. What is the class number of \mathfrak{O}_K ? Justify your answer.	5
d. What is the rank of \mathfrak{O}_K^* , the group of units?	2
e. What are the torsion elements in \mathfrak{O}_K^* ?	3
f. Find a unit of infinite order, if it exists.	5

3. Consider the cyclotomic field $K = \mathbb{Q}(\zeta_7)$ where $\zeta_5 = e^{\frac{2\pi i}{7}}$. Let \mathfrak{O}_K be its ring of integers.

a. Factorise 5 into prime ideals.	5
b. Factorise 7 into prime ideals.	5
c. Factorise 11 into prime ideals.	5
d. What is the class number of \mathfrak{O}_K ? Justify your answer.	5
e. What is the quadratic subfield of K ?	5